
JOURNAL OF APPROXIMATION THEORY 62, 243-256 (1990)

Best Multipoint Local Lp Approximation

A. ALZAMEL

Department or Mathematics, University or Kuwait, Kuwait

AND

J. M. WOLFE

Department oj Mathematics, University or Oregon,
Eugene, Oregon 97403, U.S.A.

Communicated by E. W. Cheney

Received April 6, 1987

1

Introduction

Let M be a finite-dimensional subspace of C(I) where I = [a, bJ and let
X = {x I' ..., X k} where a ~ Xl < ... < X k ~ band k ~ 1. Let / E C(I) be fixed.
Then for each fixed I ~ p ~ 00 and for all positive and sufficiently small h,
there exists at least one qhEM that minimizes

i r +h I/(t) - q(tW dt
j= 1 .\}

as q ranges over M. (1.1 )

(If p = 00 we consider maxI ";j,,;k {maxI [/(t) - q(t)I: X j ~ t ~ x/ + h D.
We call q* E M a best local k-point approximation to / if there is a

sequence h" ~ 0 + such that qh, ~ q*. The purpose of this paper is to study
the existence, uniqueness, and characterization question for this problem in
the case where M is an n + 1 dimensional extended TchebychefT subspace
of C[a, b]. We are able to show that for 1 < p ~ 00 and / E Cn[a., bJ a best
k-point local approximant exists, is unique, and is characterized as the
solution of a certain optimization problem involving only the values of /
and its derivatives up to a certain order (depending on nand k) at the
points Xl' ... , X k • The results obtained may be regarded as providing a
natural way of extending the classical interpolation theory of polynomials
(including Taylor's polynomials and Hermite interpolation) to situations
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where they do not normally apply (i.e., when k does not necessarily divide
n + 1).

The case k = 1 was studied in the papers [1 3J while the case k = 2 was
considered in [4 l Beatson and Chui introduced the general multipoint
local approximation problem in [5J and obtained partial existence and
characterization results in special cases. We shall refer to these results later.

2

Definitions and Notation

Throughout this paper, I will denote the interval [a, hJ, nand k will be
fixed positive integers with k ~ n + 1, and X will denote the fixed set
{x I' ... , X k } where a ~ x I < ... < x k ~ h. The integers I and r will be defined
by

and r= n + 1-lk, (2.1 )

where [ J denotes the greatest integer function. The set {Vi} ;'~ a c C"(l 1
will be an ETS of order I and M will denote span {Va' ... , V,,}. (Recall that
the order of {Vi} 7~ a = I means that if z l' ... , Zm are distinct points in [a, hJ
and if! l' ... , im are nonnegative integers such that!, ~ I ~ 1, i = I, ... , In, and
i1 + ... +im=n+ 1, then there is a unique qEM such that q(l)(Z,)=
f(7)(z,), i=O, ... , i" s= 1, ... , In.)

For h satisfying 0< h ~ mini os;! k 1 lXi, 1 ~ XII let Ih denote
U;~ 1 [Xi' Xl + hl

Given f E C' I [IJ we define

(2.2)

(2.3 1

(2.4 )

where Cp is a constant independent of h, g, and f to be specified later. In
the case P = x' we define

Nh(g)=C f max max Ig(tl!,
1 ~i.:S;k {E rx/.x/ +h1
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As stated in the Introduction we wish to consider the behavior of {qh}
as h ---> 0 + where qh minimizes (1.1). Our first task is to show that for
appropriate f the net {qh} in fact has at least one cluster point as h ---> 0 + .

Since qh = f for at least n + 1 points in [a, b J (see Lemma 1) we shall
analyze this problem by considering the properties of interpolating "poly­
nomials" following the approach in [3].

Let X* = LVI, ..., y,} C [ be such that Yl < ... < y, and r~n + 1. For
each v, let {xii(v)},j= 1, ... ,m j , be sequences in [satisfying

lim xii(v) = Yj,
r-x

i= 1, ... , r, j= 1, ... , l1Z j ,

(3.1 )

(3.2)

where each m, is an integer greater than or equal to 1 with L; ~ I In j = n + 1.
Now, given f EO C(I), let q, denote the unique element of M that satisfies

i= I, 2, ... , r, j= I, 2, ... , mi' (3.3 )

LEMMA 1. For each i=O, 1, ... , n the coefficients aj(v) of q, can be
written in the .!c)rm

UO[X 11 , ... , xln/I] ···.r[X II ' ... , x lm !] ... Un [X 11 , .. " X '1/1) J
U()[X 21 J·········· f[X2IJ U,,[X 21 J

aj(v) = --~---------------

. .
UO[X 11 , .. " x 1m\] ... U i [.X ll , .. " x 1ln \J ... Un[X t 1, .. " X 1m\] !

UO[X rl , ... , XrmrJ ... U i [.X r1 , ... , XnnrJ ... U,,[X r1 , .. " X rm,]
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Proof: Applying Cramer's rule to (3.3) and using row operations and
elementary properties of determinants the lemma follows immediately. I

Now by elementary properties of divided differences

lim
glfll' II(yJ

g[X i1 , X i2 ' ... , ximJ == "'----------'----'
, (m,-I)!

i= 1, ... , r, (3.4 )

if g(fII, II(X) is continuous at y" i= 1, ... , r.

We now have

THEOREM 1. Let f E C m [I] where m = max I ,,;, r m, (where l\1 is an
extended Tchebychefl space oj'dimension n+ 1?rn) and let {xif(v)} and
{q,.} eM safi.lfy (3.1), (3.2), and (3.3). Then the sequence {q ,.} is uniformly
hounded on I and converges unij'ormly to q() EM which satisj'ies

i= 1, ... , r andj=O, 1, ... , n1 , - l. (3.5 )

Proof: Lemma 1 implies that the coefficients a,(v) converge as v -+ x to
coefficients ai' i= I, ... , r, which by (3.4) are exactly the solutions obtained
when Cramer's rule is applied to (3.5). I

COROLLAR Y I. Let f E C" [I] and for each h > 0 let qh,·denote a (unique
f()r 1 < p:::; x)) U' approximation to f on I h hy elements of M. Let {qh,} he
an arhitrary suhsequence oj' {qh}' Then {qh,} is unif()rmly bounded and hence
has at least one cluster point q() as v -+ 'x. Moreover, qIJ satisj'ies (3.5) f()r
some appropriate set oj' y,'s.

In addition to Theorem 1, the proof of the corollary rests on the
following well known property of ETSs.

LEMMA 2. Let f E C[J] and q* he any element oj'M such thatj'- q* has
at most n sign changes in I. Then there exists a q E M such that q -# 0 and
(f-q*)q?O on I.

Prooj' oj' Corollary 1. For simplicity we will write q,. and I, instead of
qh, and I h" respectively. In view of Theorem 1 it suffices to show thatf - q,.
has at least n + 1 zeros on I. Suppose not. Then there exists q -# 0 in M such

that (f - q,) q ? 0 on I. Assume 1 < P < c(;. (The proof for the other cases
is similar.) Then

{ If-q,.If' I sgn(f-q,.)mdll,.=O for all III E M, (3.6 )
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where Il" = IlX(lJ, Il is Lebesgue measure, and X(JJ is the indicator
function of Iv. Applying (3.6) for m = q we conclude that

which is a contradiction since the integrand may vanish on a set of measure
zero only and is nonnegative. I

4

K-Point Local Approximation (1 :::; P < 00 )

The notation and setting are as in (2.1 )-(2.4).

LEMMA 3. Let! E cl+1 [I] and let 1 :::; P < 00. Then

f 1f'~qIPdt:::;O(hPI+l)
I"

for every q E S. (4.1 )

Proal Let q E S and let ({J = f - q. Then using the Taylor expansion of
({J about Xi and using the definition of S we have

and hence

L1({J(t)IPdt=JI (1+" 1(t~t.y({JII\Xi)+O((t-Xj)I+lfdt. (4.2)

Changing variables on the right hand side of (4.2) we get

k I Ih'u
l

IPL, 1({J(t)IP=j~l h fa l!({JII)(Xi)+O((hu)ltl) du

k 1 I (1)( ) IP
= L hP/t1 f ~ul+O((hu)/+l) du

l~ I 0 I.

:::; O(hP/+ J). I

THEOREM 2. For each h > 0, let qIi be a best L P (1 :::; p < 00 ) approxima­
tion to f E cl+1[I,,] from M. Suppose that q" ---> qo as h ---> °+. Then qo E S
so that

i = 0, ... , 1- 1, j = 1, ... , k.
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Proof From Lemma 3 and the definition of q/l we have that

k ,".\-, -+ II

L I· IU-q/l)(IW'du:;O(hl'lrlj
j 1 '-·\1

and hence

('.\-J 1- II

I IU-q/l)(IW dl':;;O(hl'lt I),
•- r"

j= I, ... , k .

Now without loss of generality consider the case S~; IU-q/l)(I)I P dl':;;
O(h PI + 1) and suppose that as h -+ 0 +, q /I -+ qo such that

q~J(O)=rJ(O), i=O, 1, ... ,.1'-1, where .1'<1 and q0'1(0)#
P'I(O), where negative superscripts are suppressed if .I' = O. (4.3)

Letting E/I = f - q/l for h ~ 0 we have after the change of variable hu = I,

.1

I IE/I(hu)1 P du,:;; O(h Pf
).

'0

Using the Taylor expansion of E/I(hu) about u=O with exact remainder
(see Davis [6]) we get

.1 I h' 1u' 1I E/I(O)+huE!,(O)+ ... + Ej;'
'0 (.I' - 1)!

+ E/I[O, 0, ..., 0, hu] h'U'f' du':;; O(hl'l).

This may be written in the equivalent form

,1

I IAo(h)+A1(h)u+ ... +A, I(h)u' 1+A,(h, u)uY du':;;O(h P
(! 'I),

'0

(4.4 )

where A,(h) = El/I(O)/h' 'i!, i = 0, I, ... , .I' - I, and A,(h, u) =
E I1 [O, 0, ... , 0, hu].

Taking limits in (4.3) as h -+ 0 + we must consider two cases:

Case 1. Each A,(h), i=O, 1, ... ,.1'-1. is bounded as h-+O+. Then by
going to an appropriate subsequence h,. -+ 0 + we obtain

E(')(O) II'
1 +_o_u' du

s!

which is a contradiction since E:il(O)#O.
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Case 2. There is a sequence {h" } such that N, == maxo,; i';, I

IA ,(h,,)! P -> C1J as h,. -> °+. Dividing both sides of (4.4) by N" and
going to a subsequence if necessary we obtain the equality °=
J!lIBo+B1u+ ... +B,u'IPdu where maxo,;,c,IB11=1 which is also a
contradiction. Thus (4.3) leads to a contradiction and hence flil(O) =
qg)(O), i=O, I, ...,s-I, where s~1. Thus q~i)(XJ=Pi)(.,), i=O, ...,I-I,
j= I, ... , k. I

COROLLARY 2. Let n = lk - I and let f E C/ + 1[I] and I < P <Xi he
.fixed. For each h > °let qli denote the (unique) hest U' approximation to f
on Iii hy elements oj'M. Then the net {qli} converges uniformly to the unique
element qo EM satisfying

i = 0, ... , 1- I, j - 1, ... , k. (4.5)

Proof: If n + I = lk, then the set S contains exactly one element, namely
the Hermite interpolating "polynomial" satisfying (4.5), and hence by
Theorem 2 and Corollary I, we have the result. I

Remark. Corollary 2 was proved in a different manner by Beatson and
Chui in [5].

5

Characterization oj'Local L P Approximants

We shall now characterize the properties of local approximants. We shall
need the following definition.

DEFINITION. For any interval [ex, IJ] and any fixed P (1 ~ P ~;YJ) the I
distinct points {tf, ... , t{*} c [ex, #] are called the Tchebycheff points for
[ex, In if they minimize the quantity

overall (tl, ... ,t/)c[ex,py

Remark. From well known results in approximation theory (see Davis
[6], for example) the Tchebycheff points in (0, I) exist and are unique for
each P, I ~ P ~x. If we denote these by {u f, ..., ui} then the correspond­
ing Tchebycheff points in (ex, #) are given uniquely by the relationship

t i* = (#- ex )u 1* + ex, i= I, ... , I. (5.1 )

We now define exp=U!lIIT~1 (u-uiWdu]IP, I~P<x, and ex, =
maxuEro.llITI;~1 (u-unl·
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In view of (5.1 ). for each h > 0 and each j. I ~ j ~k. there exist I unique
points in (xl.xi+h) say tii(h)•.... tti(h) such that u,* = (t,";(h) x/)/h,
i = I, ... , I. (These being the Tchebycheff points for [XI' xi + h].) Now let
q E S be arbitrary and for each h > 0 define (ft, E M by the following inter­
polation condition:

(i) (ft,(t /j (h l )= f(t if (h) l. i = 1, .... I. j = 1, .... k.

(ii) (I /i( t) = q( t) at any r points distinct from the x/so (Recall
n + I = r+ Ik.)

Then from Theorem I we infer that ii;, --> q as h --> O. Moreover we have the
following relationship between ii;, and q.

LEMMA 4. Assume fECi f I [IJ and I ~ P <x. Let q E S he arhitrarl'
and let ii;, he defined hl' (i) and (ii). Then N/iU - (ft,) --> NU - q) as h --> 0 I

where Cp=(!!jy. p( in the defif;ition ofN/i(') (see (2. 4)).

Prout:

I I ,I'xTI t-t,t(hll.. dt,
, I

where £/i(t) = U - (ft,)( t) and where we have used the fact that the Newton
interpolating polynomial of degree ~ 1- I that interpolates £/,( t) at
tt(h), ... , tti(h) is identically zero. Using the mean value theorem for
integrals we get

N;,U-q/,)=I {h~:: I I£/,[t,)'(h), ..., tl";(h), xi + {i/i(h)]I P

I~ I

where 0 < {i /i < I, i = 1, ..., I. j = I, .... k.
By changing variables in each inverval separately uSing u = (t - XI )/h,

j = 1, ... , k we get

k

N J,'U- (/J,) = I C p I£/i[tt(h) . .... 't(h). XI + {l/ih] II'
I'~ I

I I k II'
X L ,Ill (u - U,*) du
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so as h ---> 0 +, N ~(f - (h) ---> L:7~ 1 IE~)(x)1 p where Eo(t) = fit) - q(t). Thus
lim" "0 Nh(f-q,,)=N(f-q). I

Remark. Of course it would be preferable to be able to prove Lemma 4
using qh instead of qh' The difficulty that arises is the possibility that f - qh
might not have a full set of roots in each [Xj' x/ + hJ and that it doe; not
seem easy to prove directly that the appropriate number of roots cluster at
each x/ as h ---> O. Hence we use the auxiliary net ih.

COROLLARY 3. Let f E C I +1(1). It' qh is a best L p approximation to f
Fom M on I h and if qh ---> qo E S as h ---> 0 + then

lim sup N,,(f - qh) :( N(f - qo)·
" ~o'

Prool Nh(f-qh):(Nh(f-qh)--->N(f-qo) as h--->O+, which clearly
yields the corollary. I

LEMMA 5. LetfECI+1[IJ and for each h>O let qh be a best L p

approximation to f on h from M. It' qh ---> qo E S as h ---> 0 + then

lim inf Nh(f - qh) ~ N(f - qo)·
Ii _ 0 +

Proof

where Eh(t) = (f - qh)(t) and where the change of variable u == (t - x/)/h
has been made in each integral j = I, ... , k. Expanding Eh(xj + hu) III a
Taylor's expansion about u = 0 and dividing by hiP we get

r
1 IEh(Xj + hu)1 P r1

'0 hiP du = 00 IAoj(h) + A u(h)u

+ ... + A/j(h)u l + O(hW du, (5.2)

where A Ij (h) = E ~:)C'Y;J/i! hl
- I, i = 0, ... , I, j = I, ... , k.

Claim. maxO<:;,<:;1 IAij(h)1 =Mj(h) is bounded as h--->O+.

Proof If not there is a sequence h .. ---> 0 + such that Mj(hvl---> 00.

Since (5.2) is bounded (N~(f-qh):(N~(f-q)for qES and N~(f-q)

is bounded as h--->O by Lemma 3) then dividing both sides by Mj(h v )
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and going to a subsequence if necessary we arrive at the contradiction
0= Ilqllp, where qEJII _ 1 has at least one coefficient equal to one.

Thus {M, (h)} is bounded and so let {h,.} --+ 0 + be an arbitrary sequence
such that A;/ == AuUIJ --+ Au as v --+ 00, i= 0, ... , t, i = 1, ... , k, where

j= 1, 2, ... , k.

c 1

N;,,(f-qd='LCp I IA~I+A'liu+", +A;jul+O(h,.W'du
"0

1

;? 'L C p r IA;J/+'" +A;;ul+O(h,.)IPdu
IE vI' '0

-I

= 'L C p IA;~IP I IB;;/ + ... + B; 1,/1/ 1 + 1/ + O(h,,)I P duo
'0

As v --+ cr:; this converges to

Moreover, Iii IB OI + ... + B I _ I, /Ul I + 1/1 Pdu;? :/, j = I, ..., k. Thus.
I· N (j'- )>-' 1£(1)(· II' - ,k 1£(1)( 11'- P ._1m, _~ T h, qh, /' L./E W 0 x;l - L./~ I 0 xi) - N (.f qo)·
Starting with a sequence {h,.} such that lim,.Nh,(f-qh)=
lim II) 0 I Nh(f - qh), and going to subsequences if necessary we conclude
limh~O' Nilf -ql,);?N(f-qo)· I

We now have the following characterization theorem:

THEOREM 3. Letf E C I + 1[1] and qh he a best L p approximation tofon
I h from M (I :s; P < 00 ). If as h --+ 0 T, qh --+ qo E S then

(i) limh~o N,,(f-qh)=N(f-qo)

(ii) N(f - qo) :s; N(f - q )ll)r all q E S.

Proof (i) This follows immediately from Corollary 3 and Lemma 5. Let
q E S be arbitrary and define (It. for q as in Lemma 4.

(ii) From Lemma 4, we have lim h .0' Nh(f-ift,)=N(f-q). But
since Ndf-qh):S; Nllf-qh) then N(f-qo) = limh~o' Nllf-qh) =
lim h • o I Nh(f - qh) = N(f - q). Since q was arbitrary in S we have proved
(ii). I
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Remark. For future reference we note that in the previous results where
we have assumed qh ---> qo as h ---> 0 +, the results are still valid with the
weaker assumption qh, ---> qo where hI' is some sequence such that hI' ---> 0 +.

6

Existence and Uniqueness of Local ApproximanL~

In view of Theorem 3 it is of interest to determine when the problem

Minimize N(f - q) as q ranges over S (6.1 )

has a unique solution. The existence of a solution is clear since N(f - .) is
a continuous seminorm and S is a translate of the finite dimensional sub­
space of M, So:={qEM/q(i)(xJ=O, i=O, ... , 1=1; j=I, ... ,k}. For
1 < P < 00 we have the following.

THEOREM 4. Given f E C! + I [I], there is a unique qo E S solving (6.1) for
each 1< p < 00.

Proof For q E S define r/J: C!+ 1[I] ---> R k by

r/J[g] = [4Jl(g), ... , 4Jk(g)]T,

where 4Jj(g) = g(/)(xj ), j = 1, ... , k, and let K = {r/J(f - q): q E S}. Then K is
a closed convex subset of R k since r/J is a linear map and {J - q: q E S} is
a finite dimensional affine subspace of C(/V). Since the finite dimensional
p-norm is strictly convex on R K then there exists a unique element in K
with minimum p-norm. Now suppose ql and q2 both minimize N(f-q).
Then r/J(f - qd = r/J(f - q2)' But then by linearity of r/J,

so that

j= 1, ... , k.

But q1, q2 E S implies that (ql - q2j!il (xJ = 0, i = 0, ..., 1- 1, j= 1, ... , k. But
m is an ETS of dimension n + 1 < Ik + 1 so that q1 = q2' I

Putting together our previous results we have the main result for the case
1 <p<x.

THEOREM 5. Let f E C!+ 1[I] and 1 < p < 00 be fixed. Then the net
qh ---> qo uniformly on I as h ---> 0 + where qo is the unique member of S solving
(6.1 ).
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Proof Let (q Ii,} be an arbitrary subsequence of [q Ii}' Then there is a
further subsequence (which we do not relabel) such that qli -> qli' Then
qlieS (Theorem 2) and qo solves (6.1) (Theorem 3). By Theorem 4. qo is
unique. Thus [q Ii} has a unique cluster point qli and hence (/h -> qli as
17->0'. I

Remark 1. The main result [4. Theorem 2.9. p. 43 J follows from our
results as follows.

Let k = 2. x I = - I. Xc - 1. and f e C'[ - 1. 1]. Then the best C local
approximation qo to f from M = ITC/I is uniquely determined by the inter­
polation conditions:

(i) qii'(±I)=j!"(±I). i=O. I ..... n-I.

(i i) q ii'}(1)+ (- I )/1 qg'l ( - 1) = j! /I '( 1)+ (- 1)" P /I I( - 1).

Prool Since qoeS, (i) follows immediately. To obtain (ii). first note
that qli is the unique minimizer of

as q varies over S.

But q e 51 implies q = qC/I I (x l + e(x + 1)/1 (x - 1)" for some constant
where qC/I 1(x) is the Hermite interpolating polynomial of degree 2n - 1
for f using the points - 1 and 1. This_ gives ql/lI(X) =
q';:,1 t+n!e[(x+l)"+(x-l)/lJ so that (cq l/l'/ce)(±1)=(±1)/lnl2/1.
Thus viewing eP as a function of e. qli is characterized by the condition
(reP/ce)(eo) = 0 where Co is the constant associated with qli' Applying this
condition and simplifying yields (ii). I

Remark 2. A similar characterization may be obtained for the 3-point
local L C approximation qo to f from TI3n' Indeed. q() is characterized by the
conditions:

(i) qk'(x)=j!',(x), X= -I, O. 1 and i=O, I, .... n-1.

(ii) [/1/11(-1) - qi;l)(-I)J + [/1 11 1(1) - qg'I(-llJ = ((_1)"+-'/2/1)
[/1/1)(0) - qi;')(O)].

7

The Case P= 1

Simple examples show (see [7, p. 42J) that the best C approximation
to a continuous function from TI/I on a closed set containing two disjoint
intervals is not necessarily unique and that given a net [qh} of best L I
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approximations to f; then the cluster points of this net may be infinite
in number. Thus the methods applied in the case I < P <x yield the
following weaker version of Theorem 5.

THEOREM 6. Giren f E C! + I [1], let q,,(f) he a hest L 1 approximation
to fFom Man 1". Then {q,,(f)) is unifimnly hounded and every cluster
poinl qo of' {q,,) as h -> °+ is in S' and minimizes N(f - q) as q wries
IIrer S'.

The Case P =X

Most of the analysis that goes into this case is analogous to that for
I < P < (XJ and we refer the reader to [7] for the complete details. We shall
only examine the uniqueness question for the minimization of N(f - q) as
q ranges over S in detail since the infinity norm is not strictly convex. We
begin with a standard definition.

DEFINITION. Let X be a compact Hausdorff space. We say L is a Haar
subspace of C( X) of dimension r on X if and only if L is a subspace and
zero is the only function in L that has r or more roots in X.

Let X= {XI, ... , Xk] and H= {qlll: qill(.\) =0, i=O, I, ..., I-I;
j = I, ... , k; q EM) where M is an ETS of dimension n + I = Ik + r on J::::l X.

LEMMA 6. H is a Haar suhspace ot'dimension r on X.

Prool Clearly, H is a subspace of C(X) = the space of all functions on
X. Suppose H is not Haar. Then we can find a nonzero element hE H such
that h has at least r roots in X. Let q E M be such that qlll = h. Then

q1il(X/), i=O, 1, .... I-I:j= 1, ... , k.

Moreover, qll1 has at least r zeros in X which means that q has at least
kl + r zeros in X including multiplicities. But q E M and M is of dimension
11 + I = Ik + r and is an ETS so q:=°which is a contradiction. I

Recall now that for P= x, N(f--q)=max\EX Iflll(X)_qlll(xll.

THEOREM 7. Iff E c il
t 11(1), there is a unique qo E S such that

N(f- qo) = min N(f- q).
(I c ,)"

Proal Suppose q I and q} are both minimizers of N(f - q) as q ranges
over S. Then N(f- q,) = N(f - q}) and

(q\1l _ qii l )(.\) = 0, i = 0, 1, ... , 1- 1, j - I, ... , k, so that
h:=q\l)-qil) is a member of H. (7.1)
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Now since min'lE s N(f - q) = min;'E H max<c x Ifil)(x) - qi'I(X) - h(x)l,
then this minimum occurs only when h == 0 by the Haar property of H.
Thus q\/l = q~/l and so using (7.1) we conclude q I = q2' I

Remark. Before stating the local best approximation theorem for the
uniform case we note that for each h > 0 the best uniform approximation
q;, on I;, is uniquely defined if M is a Haar space on I such that I;, is a com­
pact subset of 1 containing at least N + I points.

THEOREM 8.1. Let fEC'~I[J] and P=X;. Then the net q;,-+qo
unij'ormly on 1 as h -+ 0 + where qo is the unique minimizer oj' N(f - q) as
q ranges over S.

Concluding Remarks. During the analysis presented in this paper, we
have always assumed that each interval was of the form [xl' x, + h],
j = I, ... , k. The only crucial aspect of this is that XI be in the interval and
that the length of the interval is the same for all j. However, if we allow the
intervals length to vary (but shrink to zero as h -+ 0) the limiting qo may
change. In a two point approximation problem, for example, if the intervals
are [XI,X 1 +h] and [X 2 ,x2 +2h] then the limiting qo will minimize a
weighted functional N with weights 1/3 and 2/3. Thus,~the uniqueness of qo
also depends on the way in which we shrink the intervals. This
phenomenon has been noted by Chui et al. also in the more general situa­
tion of multivariate local approximation [6].
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