Best Multipoint Local L_{p} Approximation

A. Alzamel
Department of Mathematics, University of Kuwait, Kuwait

AND
J. M. Wolfe

Department of Mathematics, University of Oregon, Eugene, Oregon 97403, U.S.A

Communicated by E. W. Cheney
Received April 6, 1987

1

Introduction

Let M be a finite-dimensional subspace of $C(I)$ where $I=[a, b]$ and let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ where $a \leqslant x_{1}<\cdots<x_{k} \leqslant b$ and $k \geqslant 1$. Let $f \in C(I)$ be fixed. Then for each fixed $1 \leqslant p \leqslant \infty$ and for all positive and sufficiently small h, there exists at least one $q_{h} \in M$ that minimizes

$$
\begin{equation*}
\sum_{j=1}^{k} \int_{x_{j}}^{x_{j}+h}|f(t)-q(t)|^{p} d t \quad \text { as } \quad q \text { ranges over } M \tag{1.1}
\end{equation*}
$$

(If $p=\infty$ we consider $\max _{1 \leqslant j \leqslant k}\left\{\max _{t}|f(t)-q(t)|: x_{j} \leqslant t \leqslant x_{j}+h\right\}$).
We call $q^{*} \in M$ a best local k-point approximation to f if there is a sequence $h_{v} \rightarrow 0^{+}$such that $q_{h_{\mathrm{v}} \rightarrow q^{*}}$. The purpose of this paper is to study the existence, uniqueness, and characterization question for this problem in the case where M is an $n+1$ dimensional extended Tchebycheff subspace of $C[a, b]$. We are able to show that for $1<p \leqslant \infty$ and $f \in C^{n}[a, b]$ a best k-point local approximant exists, is unique, and is characterized as the solution of a certain optimization problem involving only the values of f and its derivatives up to a certain order (depending on n and k) at the points x_{1}, \ldots, x_{k}. The results obtained may be regarded as providing a natural way of extending the classical interpolation theory of polynomials (including Taylor's polynomials and Hermite interpolation) to situations
where they do not normally apply (i.e., when k does not necessarily divide $n+1$).

The case $k=1$ was studied in the papers [113] while the case $k=2$ was considered in [4]. Beatson and Chui introduced the general multipoint local approximation problem in [5] and obtained partial existence and characterization results in special cases. We shall refer to these results later.

2

Definitions and Notation

Throughout this paper, I will denote the interval $[a, b], n$ and k will be fixed positive integers with $k \leqslant n+1$, and X will denote the fixed set $\left\{x_{1}, \ldots, x_{k}\right\}$ where $a \leqslant x_{1}<\cdots<x_{k} \leqslant h$. The integers l and r will be defined by

$$
\begin{equation*}
l=\left[\frac{n+1}{k}\right] \quad \text { and } \quad r=n+1-l k, \tag{2.1}
\end{equation*}
$$

where [] denotes the greatest integer function. The set $\left\{U_{i}\right\}_{i=0}^{n} \subset C^{n}(I)$ will be an ETS of order l and M will denote span $\left\{U_{0}, \ldots, U_{n}\right\}$. (Recall that the order of $\left\{U_{i}\right\}_{i=0}^{n}=l$ means that if z_{1}, \ldots, z_{m} are distinct points in $[a, b]$ and if j_{1}, \ldots, j_{m} are nonnegative integers such that $j_{i} \leqslant l-1, i=1, \ldots, m$, and $j_{1}+\cdots+j_{m}=n+1$, then there is a unique $q \in M$ such that $q^{(i)}\left(z_{s}\right)=$ $f^{(i)}\left(z_{s}\right), i=0, \ldots, j_{s}, s=1, \ldots, m$.)

For h satisfying $0<h \leqslant \min _{1 \leqslant j \leqslant k} \quad| | x_{j+1}-x_{i} \mid \quad$ let $\quad I_{h}$ denote $\bigcup_{j=1}^{k}\left[x_{j}, x_{j}+h\right]$.

Given $f \in C^{\prime-1}[I]$ we define

$$
\begin{align*}
S & =\left\{q \in M: q^{(i)}\left(x_{j}\right)=f^{(i)}\left(x_{j}\right), i=0, \ldots, l-1 ; j=1, \ldots, k\right\} \tag{2.2}\\
N(g) & =\left[\sum_{i=0}^{l} \sum_{j=1}^{k}\left|g^{(i)}\left(x_{j}\right)\right|^{P}\right]^{1 / P}, \quad g \in C^{\prime}[X] \tag{2.3}\\
N_{h}(g) & =\left[\sum_{j=1}^{k} \frac{C_{p}}{h^{(P+1}} \int_{x_{i}}^{x_{j}+h}|g(t)|^{P} d t\right]^{1 ; P} \quad(1 \leqslant P<\infty), g \in L_{P}\left(I_{h}\right), \tag{2.4}
\end{align*}
$$

where C_{p} is a constant independent of h, g, and f to be specified later. In the case $P=\infty$ we define

$$
N_{h}(g)=C_{x} \max _{1 \leqslant j \leqslant k} \max _{1 \in\left\lceil x_{j}, x_{j}+h\right\rceil}|g(t)|, \quad g \in C\left(I_{h}\right) .
$$

As stated in the Introduction we wish to consider the behavior of $\left\{q_{h}\right\}$ as $h \rightarrow 0^{+}$where q_{h} minimizes (1.1). Our first task is to show that for appropriate f the net $\left\{q_{h}\right\}$ in fact has at least one cluster point as $h \rightarrow 0^{+}$. Since $q_{h}=f$ for at least $n+1$ points in $[a, b]$ (see Lemma 1) we shall analyze this problem by considering the properties of interpolating "polynomials" following the approach in [3].

Let $X^{*}=\left\{y_{1}, \ldots, y_{r}\right\} \subset I$ be such that $y_{1}<\cdots<y_{r}$ and $r \leqslant n+1$. For each v, let $\left\{x_{i j}(v)\right\}, j=1, \ldots, m_{i}$, be sequences in I satisfying

$$
\begin{gather*}
a \leqslant x_{11}(v)<\cdots<x_{1 m_{1}}(v)<x_{21}(v)<\cdots<x_{2 m_{2}}(v) \\
<\cdots<x_{r 1}(v)<\cdots<x_{r m_{r}}(v) \leqslant b \tag{3.1}\\
\lim _{v \rightarrow \infty} x_{i j}(v)=y_{i}, \quad i=1, \ldots, r, j=1, \ldots, m_{i}, \tag{3.2}
\end{gather*}
$$

where each m_{i} is an integer greater than or equal to 1 with $\sum_{i=1}^{r} m_{i}=n+1$.
Now, given $f \in C(I)$, let q_{v} denote the unique element of M that satisfies

$$
\begin{equation*}
q_{v}\left(x_{i j}(v)\right)=f\left(x_{i j}(v)\right), \quad i=1,2, \ldots, r, j=1,2, \ldots, m_{i} . \tag{3.3}
\end{equation*}
$$

Lemma 1. For each $i=0,1, \ldots, n$ the coefficients $a_{i}(v)$ of q_{v} can be uritten in the form

Proof. Applying Cramer's rule to (3.3) and using row operations and elementary properties of determinants the lemma follows immediately.

Now by elementary properties of divided differences

$$
\begin{equation*}
\lim _{v \rightarrow \infty} g\left[x_{i 1}, x_{i 2}, \ldots, x_{i m_{i}}\right]=\frac{\left.g^{\left(m_{i}\right.}{ }^{1}\right)\left(y_{i}\right)}{\left(m_{i}-1\right)!}, \quad i=1, \ldots, r, \tag{3.4}
\end{equation*}
$$

if $g^{\left(m_{i}\right.}{ }^{1)}(x)$ is continuous at $y_{i}, i=1, \ldots, r$.
We now have

Theorem 1. Let $f \in C^{\prime m}[I]$ where $m=\max _{1 \leqslant i \leqslant r} m_{i}$ (where M is an extended Tchebycheff space of dimension $n+1 \geqslant m)$ and let $\left\{x_{i j}(v)\right\}$ and $\left\{q_{v}\right\} \subset M$ satisfy (3.1), (3.2), and (3.3). Then the sequence $\left\{q_{v}\right\}$ is uniformly bounded on I and converges uniformly to $q_{0} \in M$ which satisfies

$$
\begin{equation*}
q_{0}^{(j)}\left(y_{i}\right)=f^{(j)}\left(y_{i}\right), \quad i=1, \ldots, r \text { and } j=0,1, \ldots, m_{i}-1 . \tag{3.5}
\end{equation*}
$$

Proof. Lemma 1 implies that the coefficients $a_{i}(v)$ converge as $v \rightarrow x$ to coefficients $a_{i}, i=1, \ldots, r$, which by (3.4) are exactly the solutions obtained when Cramer's rule is applied to (3.5).

Corollary 1. Let $f \in C^{n}[I]$ and for each $h>0$ let q_{h} denote a (unique for $1<p \leqslant \infty) L^{p}$ approximation to f on $I_{h} b y$ elements of M. Let $\left\{q_{h},\right\}$ be an arbitrary subsequence of $\left\{q_{h}\right\}$. Then $\left\{q_{n}\right\}$ is uniformly bounded and hence has at least one cluster point q_{0} as $v \rightarrow \infty$. Moreover, q_{0} satisfies (3.5) for some appropriate set of y_{i} 's.

In addition to Theorem 1, the proof of the corollary rests on the following well known property of ETSs.

Lemma 2. Let $f \in C[I]$ and q^{*} be any element of M such that $f-q^{*}$ has at most n sign changes in I. Then there exists a $q \in M$ such that $q \neq 0$ and $\left(f-q^{*}\right) q \geqslant 0$ on I.

Proof of Corollary 1. For simplicity we will write q_{v} and I_{v} instead of $q_{h_{v}}$ and $I_{h_{v}}$, respectively. In view of Theorem 1 it suffices to show that $f-q_{v}$ has at least $n+1$ zeros on I. Suppose not. Then there exists $q \neq 0$ in M such that $\left(f-q_{v}\right) q \geqslant 0$ on I. Assume $1<P<\infty$. (The proof for the other cases is similar.) Then

$$
\begin{equation*}
\int_{l_{1}}\left|f-q_{v}\right|^{p} \quad{ }^{1} \operatorname{sgn}\left(f-q_{v}\right) m d \mu_{v}=0 \quad \text { for all } \quad m \in M \tag{3.6}
\end{equation*}
$$

where $\mu_{v}=\mu \chi\left(I_{v}\right), \mu$ is Lebesgue measure, and $\chi\left(I_{v}\right)$ is the indicator function of I_{v}. Applying (3.6) for $m=q$ we conclude that

$$
\int_{I_{v}}\left|f-q_{v}\right|^{p-1}|q| d \mu_{v}=0
$$

which is a contradiction since the integrand may vanish on a set of measure zero only and is nonnegative.

4

K-Point Local Approximation $(1 \leqslant P<\infty)$

The notation and setting are as in (2.1)-(2.4).
Lfmma 3. Let $f \in C^{I+1}[I]$ and let $1 \leqslant P<\infty$. Then

$$
\begin{equation*}
\int_{I_{h}}|f-q|^{P} d t \leqslant O\left(h^{P l+1}\right) \quad \text { for every } \quad q \in S . \tag{4.1}
\end{equation*}
$$

Proof. Let $q \in S$ and let $\varphi=f-q$. Then using the Taylor expansion of φ about x_{j} and using the definition of S we have

$$
\varphi(t)=\frac{\left(t-x_{j}\right)^{\prime}}{l!} \varphi^{(l)}\left(x_{j}\right)+O\left(\left(t-x_{j}\right)^{I+1}\right)
$$

and hence

$$
\begin{equation*}
\int_{l_{h}}|\varphi(t)|^{P} d t=\sum_{j=1}^{k} \int_{x_{j}}^{x_{j}+h}\left|\frac{\left(t-x_{j}\right)^{l}}{l!} \varphi^{(t)}\left(x_{j}\right)+O\left(\left(t-x_{j}\right)^{l+1}\right)\right|^{P} d t \tag{4.2}
\end{equation*}
$$

Changing variables on the right hand side of (4.2) we get

$$
\begin{aligned}
\int_{I_{n}}|\varphi(t)|^{P} & =\sum_{j=1}^{k} h \int_{0}^{1}\left|\frac{h^{l} u^{l}}{l!} \varphi^{(l)}\left(x_{j}\right)+O\left((h u)^{l+1}\right)\right|^{P} d u \\
& =\sum_{j=1}^{k} h^{P l+1} \int_{0}^{1}\left|\frac{\varphi^{(l)}\left(x_{j}\right)}{l!} u^{l}+O\left((h u)^{l+1}\right)\right|^{P} d u \\
& \leqslant O\left(h^{P l+1}\right)
\end{aligned}
$$

Theorem 2. For each $h>0$, let q_{h} be a best $L^{p}(1 \leqslant p<\infty)$ approximation to $f \in C^{l+1}\left[I_{h}\right]$ from M. Suppose that $q_{h} \rightarrow q_{0}$ as $h \rightarrow 0^{+}$. Then $q_{0} \in S$ so that

$$
q_{0}^{(i)}\left(x_{j}\right)=f^{(i)}\left(x_{j}\right), \quad i=0, \ldots, l-1, j=1, \ldots, k .
$$

Proof. From Lemma 3 and the definition of q_{h} we have that

$$
\sum_{i}^{k} \int_{x_{1}}^{x_{t}+h}\left|\left(f-q_{h}\right)(t)\right|^{p} d t \leqslant O\left(h^{P_{t}+1}\right)
$$

and hence

$$
\int_{y_{1}}^{x_{t}+h}\left|\left(f-q_{h}\right)(t)\right|^{p} d t \leqslant O\left(h^{p l+1}\right), \quad j=1, \ldots, k .
$$

Now without loss of generality consider the case $\int_{0}^{h}\left|\left(f-q_{h}\right)(t)\right|^{p} d t \leqslant$ $O\left(h^{P i+1}\right)$ and suppose that as $h \rightarrow 0^{+}, q_{h} \rightarrow q_{0}$ such that

$$
\begin{align*}
& q_{0}^{(i)}(0)=f^{(i)}(0), i=0,1, \ldots, s-1 \text {, where } s<l \text { and } q_{0}^{(i)}(0) \neq \\
& f^{(s)}(0) \text {, where negative superscripts are suppressed if } s=0 . \tag{4.3}
\end{align*}
$$

Letting $E_{h}=f-q_{h}$ for $h \geqslant 0$ we have after the change of variable $h u=t$,

$$
\int_{0}^{1}\left|E_{h}(h u)\right|^{P} d u \leqslant O\left(h^{P /}\right)
$$

Using the Taylor expansion of $E_{h}(h u)$ about $u=0$ with exact remainder (see Davis [6]) we get

$$
\begin{gathered}
\int_{0}^{1} \left\lvert\, E_{h}(0)+h u E_{h}^{\prime}(0)+\cdots+\frac{h^{v} u^{v}{ }^{1}}{(s-1)!} E_{h}^{(s-1)}(0)\right. \\
+\left.E_{h}[0,0, \ldots, 0, h u] h^{s} u^{*}\right|^{p} d u \leqslant O\left(h^{P l}\right)
\end{gathered}
$$

This may be written in the equivalent form

$$
\begin{equation*}
\int_{0}^{1}\left|A_{0}(h)+A_{1}(h) u+\cdots+A_{s} \quad(h) u^{s}{ }^{1}+A_{s}(h, u) u^{s}\right|^{P} d u \leqslant O\left(h^{P(l-s)}\right) \tag{4.4}
\end{equation*}
$$

where $A_{i}(h)=E_{h}^{(i)}(0) / h^{\prime}{ }^{i} i!, \quad i=0, \quad 1, \ldots, s-1, \quad$ and $\quad A_{s}(h, u)=$ $E_{h}[0,0, \ldots, 0, h u]$.

Taking limits in (4.3) as $h \rightarrow 0^{+}$we must consider two cases:
Case 1. Each $A_{i}(h), i=0,1, \ldots, s-1$, is bounded as $h \rightarrow 0^{+}$. Then by going to an appropriate subsequence $h_{v} \rightarrow 0^{+}$we obtain

$$
0=\int_{0}^{1}\left|A_{0}+A_{1} u+\cdots+A_{s} \quad u^{\prime}{ }^{1}+\frac{E_{0}^{(s)}(0)}{s!} u^{s}\right|^{P} d u
$$

which is a contradiction since $E_{0}^{(1)}(0) \neq 0$.

Case 2. There is a sequence $\left\{h_{v}\right\}$ such that $N_{v} \equiv \max _{0 \leqslant i \leqslant s, 1}$ $\left|A_{i}\left(h_{v}\right)\right|^{P} \rightarrow \infty$ as $h_{v} \rightarrow 0^{+}$. Dividing both sides of (4.4) by N_{v} and going to a subsequence if necessary we obtain the equality $0=$ $\int_{0}^{1}\left|B_{0}+B_{1} u+\cdots+B_{s} u^{s}\right|^{P} d u$ where $\max _{0 \leqslant i \leqslant s}\left|B_{i}\right|=1$ which is also a contradiction. Thus (4.3) leads to a contradiction and hence $f^{(i)}(0)=$ $q_{0}^{(i)}(0), i=0,1, \ldots, s-1$, where $s \geqslant l$. Thus $q_{0}^{(i)}\left(x_{j}\right)=f^{(i)}\left(x_{j}\right), i=0, \ldots, l-1$, $j=1, \ldots, k$.

Corollary 2. Let $n=l k-1$ and let $f \in C^{l+1}[I]$ and $1<P<\infty$ be fixed. For each $h>0$ let q_{h} denote the (unique) best L^{p} approximation to f on I_{h} by elements of M. Then the net $\left\{q_{h}\right\}$ converges uniformly to the unique element $q_{0} \in M$ satisfying

$$
\begin{equation*}
q_{0}^{(i)}\left(x_{i j}\right)=f^{(i)}\left(x_{j}\right), \quad i=0, \ldots, l-1, j-1, \ldots, k \tag{4.5}
\end{equation*}
$$

Proof. If $n+1=l k$, then the set S contains exactly one element, namely the Hermite interpolating "polynomial" satisfying (4.5), and hence by Theorem 2 and Corollary 1, we have the result.

Remark. Corollary 2 was proved in a different manner by Beatson and Chui in [5].

Characterization of Local L^{P} Approximants
We shall now characterize the properties of local approximants. We shall need the following definition.

Definition. For any interval $[\alpha, \beta]$ and any fixed $P(1 \leqslant P \leqslant \infty)$ the l distinct points $\left\{t_{1}^{*}, \ldots, t_{l}^{*}\right\} \subset[\alpha, \beta]$ are called the Tchebycheff points for $[\alpha, \beta]$ if they minimize the quantity

$$
E\left(t_{1}, \ldots, t_{l}\right)=\left\|\prod_{i=1}^{1}\left(\cdot-t_{i}\right)\right\|_{P} \quad \text { over all } \quad\left(t_{1}, \ldots, t_{l}\right) \subset[\alpha, \beta]^{\prime}
$$

Remark. From well known results in approximation theory (see Davis [6], for example) the Tchebycheff points in (0,1) exist and are unique for each $P, 1 \leqslant P \leqslant \infty$. If we denote these by $\left\{u_{1}^{*}, \ldots, u_{1}^{*}\right\}$ then the corresponding Tchebycheff points in (α, β) are given uniquely by the relationship

$$
\begin{equation*}
t_{i}^{*}=(\beta-\alpha) u_{i}^{*}+\alpha, \quad i=1, \ldots, l \tag{5.1}
\end{equation*}
$$

We now define $\alpha_{P}=\left[\int_{0}^{1}\left|\prod_{i=1}^{l}\left(u-u_{i}^{*}\right)\right|^{P} d u\right]^{1: P}, \quad 1 \leqslant P<x_{i}$, and $\alpha_{x}=$ $\max _{u \in\lceil 0,1]}\left|\prod_{i=1}^{\prime}\left(u-u_{i}^{*}\right)\right|$.

In view of (5.1), for each $h>0$ and each $j, 1 \leqslant j \leqslant k$, there exist / unique points in $\left(x_{j}, x_{j}+h\right)$ say $t_{i j}^{*}(h), \ldots, t_{i j}^{*}(h)$ such that $u_{j}^{*}=\left(t_{i j}^{*}(h)-x_{j}\right) / h$, $i=1, \ldots, l$. (These being the Tchebycheff points for $\left[x_{j}, x_{j}+h\right]$.) Now let $q \in S$ be arbitrary and for each $h>0$ define $\hat{q}_{t} \in M$ by the following interpolation condition:
(i) $\dot{q}_{h}\left(t_{i j}^{*}(h)\right)=f\left(t_{i j}^{*}(h)\right), i=1, \ldots, l, j=1, \ldots, k$.
(ii) $\dot{q}_{h}(t)=q(t)$ at any r points distinct from the x_{j}^{\prime} s. (Recall $n+1=r+l k$.

Then from Theorem 1 we infer that $\hat{q}_{h} \rightarrow q$ as $h \rightarrow 0$. Moreover we have the following relationship between \hat{q}_{h} and q.

Lemma 4. Assume $f \in C^{1+1}[I]$ and $1 \leqslant P<x$. Let $q \in S$ be arhitrary and let \hat{q}_{h} be defined bly (i) and (ii). Then $N_{h}\left(f-\hat{q}_{h}\right) \rightarrow N(f-q)$ as $h \rightarrow 0^{+}$ where $C_{P}=\left(1!/ \alpha_{P}\right)^{p}$ in the definition of $N_{h}(\cdot)($ see (2.4) $)$.

Proof.

$$
\begin{aligned}
N_{h}^{P}\left(f-\hat{q}_{h}\right)= & \sum_{i=1}^{k} \frac{C_{P}}{h^{2 P+1}} \int_{i,}^{\cdots+k}\left|\hat{E}_{h}\left[t_{i j}^{*}(h), \ldots, t_{l i}^{*}(h), t\right]\right|^{P} \\
& \times \prod_{i}^{1}\left|t-t_{i j}^{*}(h)\right|^{p} d t,
\end{aligned}
$$

where $\hat{E}_{h}(t)=\left(f-\hat{q}_{h}\right)(t)$ and where we have used the fact that the Newton interpolating polynomial of degree $\leqslant l-1$ that interpolates $\hat{E}_{h}(t)$ at $t_{i j}^{*}(h), \ldots, t_{l /}^{*}(h)$ is identically zero. Using the mean value theorem for integrals we get

$$
\begin{aligned}
N_{h}^{P}\left(f-q_{h}\right)= & \sum_{j=1}^{k}\left\{\frac{C_{P}}{h^{P P+1}}\left|\hat{E}_{h}\left[t_{i j}^{*}(h), \ldots, t_{l j}^{*}(h), x_{i}+\beta_{i j}(h)\right]\right|^{P}\right. \\
& \left.\times \int_{x_{i}}^{x_{j}+h}\left|\prod_{i=1}^{1}\left(t-t_{i j}^{*}(h)\right)\right|^{p} d t\right\}
\end{aligned}
$$

where $0<\beta_{i j}<1, i=1, \ldots, l, j=1, \ldots, k$.
By changing variables in each inverval separately using $u=\left(t-x_{j}\right) / h$, $j=1, \ldots, k$ we get

$$
\begin{aligned}
N_{h}^{P}\left(f-\hat{q}_{h}\right)= & \sum_{j=1}^{k} C_{P}\left|\hat{E}_{h}\left[t_{i j}^{*}(h), \ldots, t_{l i}^{*}(h), x_{j}+\beta_{i j} h\right]\right|^{p} \\
& \times \int_{0}^{1}\left|\prod_{i=1}^{k}\left(u-u_{i}^{*}\right)\right|^{p} d u
\end{aligned}
$$

so as $h \rightarrow 0^{+}, N_{h}^{P}\left(f-\hat{q}_{h}\right) \rightarrow \sum_{j=1}^{k}\left|E_{0}^{(t)}\left(x_{j}\right)\right|^{P}$ where $E_{0}(t)=f(t)-q(t)$. Thus $\lim _{h \rightarrow 0} \cdot N_{h}\left(f-\hat{q}_{h}\right)=N(f-q)$.

Remark. Of course it would be preferable to be able to prove Lemma 4 using q_{h} instead of \hat{q}_{h}. The difficulty that arises is the possibility that $f-q_{h}$ might not have a full set of roots in each $\left[x_{j}, x_{j}+h\right]$ and that it does not seem easy to prove directly that the appropriate number of roots cluster at each x_{j} as $h \rightarrow 0$. Hence we use the auxiliary net \hat{q}_{h}.

Corollary 3. Let $f \in C^{I+1}(I)$. If q_{h} is a best L_{P} approximation to f from M on I_{h} and if $q_{h} \rightarrow q_{0} \in S$ as $h \rightarrow 0^{+}$then

$$
\limsup _{h \rightarrow 0^{+}} N_{h}\left(f-q_{h}\right) \leqslant N\left(f-q_{0}\right) .
$$

Proof. $\quad N_{h}\left(f-q_{h}\right) \leqslant N_{h}\left(f-\hat{q}_{h}\right) \rightarrow N\left(f-q_{0}\right)$ as $h \rightarrow 0^{+}$, which clearly yields the corollary.

Lemma 5. Let $f \in C^{1+1}[I]$ and for each $h>0$ let q_{h} be a best L_{P} approximation to f on I_{h} from M. If $q_{h} \rightarrow q_{0} \in S$ as $h \rightarrow 0^{+}$then

$$
\liminf _{h \rightarrow 0^{+}} N_{h}\left(f-q_{h}\right) \geqslant N\left(f-q_{0}\right) .
$$

Proof.

$$
\begin{aligned}
N_{h}^{P}\left(f-q_{h}\right) & =\sum_{i=1}^{k} \frac{C_{P}}{h^{P l+1}} \int_{v_{j}}^{x_{j}+h}\left|\left(f-q_{h}\right)(t)\right|^{P} d t \\
& =\sum_{j=1}^{k} \frac{C_{P}}{h^{I P}} \int_{0}^{1}\left|E_{h}\left(x_{j}+h u\right)\right|^{P} d u
\end{aligned}
$$

where $E_{h}(t)=\left(f-q_{h}\right)(t)$ and where the change of variable $u=\left(t-x_{j}\right) / h$ has been made in each integral $j=1, \ldots, k$. Expanding $E_{h}\left(x_{j}+h u\right)$ in a Taylor's expansion about $u=0$ and dividing by $h^{l P}$ we get

$$
\begin{align*}
\int_{0}^{1} \frac{\left|E_{h}\left(x_{j}+h u\right)\right|^{P}}{h^{\prime P}} d u= & \int_{0}^{1} \mid A_{0 j}(h)+A_{1 j}(h) u \\
& +\cdots+A_{l j}(h) u^{l}+\left.O(h)\right|^{P} d u \tag{5.2}
\end{align*}
$$

where $A_{i j}(h)=E_{h}^{(i)}\left(x_{j}\right) / i!h^{l-i}, i=0, \ldots, l, j=1, \ldots, k$.
Claim. $\max _{0 \leqslant i \leqslant 1}\left|A_{i j}(h)\right| \equiv M_{j}(h)$ is bounded as $h \rightarrow 0^{+}$.
Proof. If not there is a sequence $h_{v} \rightarrow 0^{+}$such that $M_{j}\left(h_{v}\right) \rightarrow \infty$. Since (5.2) is bounded $\left(N_{h}^{P}\left(f-q_{h}\right) \leqslant N_{h}^{P}(f-q)\right.$ for $q \in S$ and $N_{h}^{P}(f-q)$ is bounded as $h \rightarrow 0$ by Lemma 3) then dividing both sides by $M_{j}\left(h_{v}\right)$
and going to a subsequence if necessary we arrive at the contradiction $0=\|q\|_{P}$, where $q \in \Pi_{l-1}$ has at least one coefficient equal to one.

Thus $\left\{M_{i}(h)\right\}$ is bounded and so let $\left\{h_{v}\right\} \rightarrow 0^{+}$be an arbitrary sequence such that $A_{i j}^{v} \equiv A_{i j}\left(h_{v}\right) \rightarrow A_{i j}$ as $v \rightarrow \infty, i=0, \ldots, l, i=1, \ldots, k$, where

$$
A_{i j}=\frac{E_{0}^{(l)}\left(x_{j}\right)}{l!}, \quad j=1,2, \ldots, k
$$

Let $W=\left\{j: E_{0}^{(l)}\left(x_{j}\right) \neq 0\right\}$ and for $j \in W$ let $B_{i j}^{v}=A_{i j}^{v} / A_{l j}^{v}$. Then

$$
\begin{aligned}
N_{h_{r}}^{P}\left(f-q_{h}\right) & =\sum C_{P} \int_{0}^{1}\left|A_{0 j}^{v}+A_{i j}^{v} u+\cdots+A_{l j}^{v} u^{\prime}+O\left(h_{v}\right)\right|^{P} d u \\
& \geqslant \sum_{j \in W} C_{P} \int_{0}^{1}\left|A_{0 j}^{v}+\cdots+A_{l i}^{v} u^{l}+O\left(h_{v}\right)\right|^{P} d u \\
& =\sum C_{P}\left|A_{l j}^{v}\right|^{P} \int_{0}^{1}\left|B_{0 j}^{v}+\cdots+B_{l, j}^{v} u^{l}+u^{\prime}+O\left(h_{v}\right)\right|^{P} d u .
\end{aligned}
$$

As $v \rightarrow \infty$ this converges to

$$
\sum_{j \in W} C_{P}\left|\frac{E_{0}^{(l)}\left(x_{j}\right)}{l!}\right|^{R} \int_{0}^{1}\left|B_{0 j}+\cdots+B_{l-1 . j} u^{l-1}+u^{I}\right|^{\prime} d u .
$$

Moreover, $\quad \int_{0}^{1}\left|B_{0 j}+\cdots+B_{l-1, j} u^{\prime} \quad+u^{\prime}\right|^{p} d u \geqslant x^{P}, \quad j=1, \ldots, k$. Thus, $\lim _{v \rightarrow x} N_{h_{r}}\left(f-q_{h_{1}}\right) \geqslant \sum_{j \in W}\left|E_{0}^{(l)}\left(x_{j}\right)\right|^{P}=\sum_{j=1}^{k}\left|E_{0}^{(l)}\left(x_{j}\right)\right|^{P}=N^{P}\left(f-q_{0}\right)$. Starting with a sequence $\left\{h_{v}\right\}$ such that $\underline{\lim }_{v} N_{h_{v}}\left(f-q_{h_{v}}\right)=$ $\underline{\lim }_{h \downarrow 0^{+}} N_{h}\left(f-q_{h}\right)$, and going to subsequences if necessary we conclude $\varliminf_{h \rightarrow 0^{+}} N_{h}\left(f-q_{h}\right) \geqslant N\left(f-q_{0}\right)$.

We now have the following characterization theorem:

Theorem 3. Let $f \in C^{l+1}[I]$ and q_{h} be a best L^{P} approximation to f on I_{h} from $M(1 \leqslant P<\infty)$. If as $h \rightarrow 0^{+}, q_{h} \rightarrow q_{0} \in S$ then
(i) $\lim _{h \rightarrow 0} \cdot N_{h}\left(f-q_{h}\right)=N\left(f-q_{0}\right)$
(ii) $N\left(f-q_{0}\right) \leqslant N(f-q)$ for all $q \in S$.

Proof. (i) This follows immediately from Corollary 3 and Lemma 5. Let $q \in S$ be arbitrary and define \hat{q}_{h} for q as in Lemma 4.
(ii) From Lemma 4, we have $\lim _{h \rightarrow 0+} N_{h}\left(f-\hat{q}_{h}\right)=N(f-q)$. But since $N_{h}\left(f-q_{h}\right) \leqslant N_{h}\left(f-\hat{q}_{h}\right)$ then $N\left(f-q_{0}\right)=\lim _{h \rightarrow 0}, N_{h}\left(f-q_{h}\right)=$ $\lim _{h \rightarrow 0} N_{h}\left(f-\hat{q}_{h}\right)=N(f-q)$. Since q was arbitrary in S we have proved (ii).

Remark. For future reference we note that in the previous results where we have assumed $q_{h} \rightarrow q_{0}$ as $h \rightarrow 0^{+}$, the results are still valid with the weaker assumption $q_{h_{v}} \rightarrow q_{0}$ where h_{v} is some sequence such that $h_{v} \rightarrow 0^{+}$.

6

Existence and Uniqueness of Local Approximants

In view of Theorem 3 it is of interest to determine when the problem

$$
\begin{equation*}
\text { Minimize } N(f-q) \text { as } q \text { ranges over } S \tag{6.1}
\end{equation*}
$$

has a unique solution. The existence of a solution is clear since $N(f-\cdot)$ is a continuous seminorm and S is a translate of the finite dimensional subspace of $M, \quad S_{0}:=\left\{q \in M / q^{(i)}\left(x_{j}\right)=0, \quad i=0, \ldots, \quad l=1 ; j=1, \ldots, k\right\}$. For $1<p<\infty$ we have the following.

Theorem 4. Given $f \in C^{l+1}[I]$, there is a unique $q_{0} \in S$ solving (6.1) for each $1<p<\infty$.

Proof. For $q \in S$ define $\Phi: C^{l+1}[I] \rightarrow R_{k}$ by

$$
\Phi[g]=\left[\varphi_{1}(g), \ldots, \varphi_{k}(g)\right]^{T}
$$

where $\varphi_{j}(g)=g^{(l)}\left(x_{j}\right), j=1, \ldots, k$, and let $K=\{\Phi(f-q): q \in S\}$. Then K is a closed convex subset of R_{k} since Φ is a linear map and $\{f-q: q \in S\}$ is a finite dimensional affine subspace of $C^{(l)}(I)$. Since the finite dimensional p-norm is strictly convex on R^{K} then there exists a unique element in K with minimum p-norm. Now suppose q_{1} and q_{2} both minimize $N(f-q)$. Then $\Phi\left(f-q_{1}\right)=\Phi\left(f-q_{2}\right)$. But then by linearity of Φ,

$$
\Phi\left(q_{1}-q_{2}\right)=0
$$

so that

$$
\left(q_{1}-q_{2}\right)^{(i)}\left(x_{j}\right)=0, \quad j=1, \ldots, k
$$

But $q_{1}, q_{2} \in S$ implies that $\left(q_{1}-q_{2}\right)^{(i)}\left(x_{j}\right)=0, i=0, \ldots, l-1, j=1, \ldots, k$. But m is an ETS of dimension $n+1<l k+1$ so that $q_{1}=q_{2}$.

Putting together our previous results we have the main result for the case $1<p<\infty$.

Theorem 5. Let $f \in C^{1+1}[I]$ and $1<p<\infty$ be fixed. Then the net $q_{h} \rightarrow q_{0}$ uniformly on I as $h \rightarrow 0^{+}$where q_{0} is the unique member of S solving (6.1).

Proof. Let $\left\{q_{h_{1}}\right\}$ be an arbitrary subsequence of $\left\{q_{h}\right\}$. Then there is a further subsequence (which we do not relabel) such that $q_{h_{3}} \rightarrow q_{0}$. Then $q_{0} \in S$ (Theorem 2) and q_{0} solves (6.1) (Theorem 3). By Theorem 4, q_{0} is unique. Thus $\left\{q_{h}\right\}$ has a unique cluster point q_{0} and hence $q_{h} \rightarrow q_{0}$ as $h \rightarrow 0^{+}$.

Remark 1. The main result [4, Theorem 2.9, p. 43] follows from our results as follows.

Let $k=2, x_{1}=-1, x_{2}-1$, and $f \in C^{\prime}[-1,1]$. Then the best L^{2} local approximation q_{0} to f from $M=\Pi_{2 n}$ is uniquely determined by the interpolation conditions:
(i) $q_{0}^{(i)}(\pm 1)=f^{(i)}(\pm 1), i=0,1, \ldots, n-1$.
(ii) $q_{0}^{(n)}(1)+(-1)^{n} q_{0}^{(n)}(-1)=f^{(n)}(1)+(-1)^{n} f^{(n)}(-1)$.

Proof. Since $q_{0} \in S$, (i) follows immediately. To obtain (ii), first note that q_{0} is the unique minimizer of

$$
\begin{gathered}
\Phi(q)=\left[f^{(n)}(-1)-q^{(n)}(-1)\right]^{2}+\left[f^{(n)}(1)-q^{(n)}(1)\right]^{2} \\
\text { as } q \text { varies over } S .
\end{gathered}
$$

But $q \in S$ implies $q=q_{2 n}{ }_{1}(x)+c(x+1)^{n}(x-1)^{n}$ for some constant where $q_{2 n-1}(x)$ is the Hermite interpolating polynomial of degree $2 n-1$ for f using the points -1 and 1. This gives $q^{(n)}(x)=$ $q_{2 n-1}^{(n)}+n!c\left[(x+1)^{n}+(x-1)^{n}\right]$ so that $\left(\hat{c} q^{(n)} / \partial c\right)(\pm 1)=(\pm 1)^{n} n!2^{n}$. Thus viewing Φ as a function of c, q_{0} is characterized by the condition $(\partial \Phi / \partial c)\left(c_{0}\right)=0$ where c_{0} is the constant associated with q_{0}. Applying this condition and simplifying yields (ii).

Remark 2. A similar characterization may be obtained for the 3-point local L^{2} approximation q_{0} to f from $\prod_{3 n}$. Indeed, q_{0} is characterized by the conditions:
(i) $q_{0}^{(i)}(x)=f^{(i)}(x), x=-1,0,1$ and $i=0,1, \ldots, n-1$.
(ii) $\left[f^{(n)}(-1)-q_{0}^{(n)}(-1)\right]+\left[f^{(n)}(1)-q_{0}^{(n)}(-1)\right]=\left((-1)^{n+1} / 2^{n}\right)$ $\left[f^{(n)}(0)-q_{0}^{(n)}(0)\right]$.

The Case $P=1$

Simple examples show (see [7, p. 42]) that the best L^{1} approximation to a continuous function from \prod_{n} on a closed set containing two disjoint intervals is not necessarily unique and that given a net $\left\{q_{h}\right\}$ of best L^{1}
approximations to f, then the cluster points of this net may be infinite in number. Thus the methods applied in the case $1<P<x$ yield the following weaker version of Theorem 5.

Theorem 6. Given $f \in C^{\prime+1}[I]$, let $q_{h}(f)$ be a best L^{1} approximation to f from M on I_{h}. Then $\left\{q_{h}(f)\right\}$ is uniformly bounded and every cluster point q_{0} of $\left\{q_{h}\right\}$ as $h \rightarrow 0^{+}$is in S and minimizes $N(f-q)$ as q varies oter S.

The Case $P=x$
Most of the analysis that goes into this case is analogous to that for $1<P<\infty$ and we refer the reader to [7] for the complete details. We shall only examine the uniqueness question for the minimization of $N(f-q)$ as q ranges over S in detail since the infinity norm is not strictly convex. We begin with a standard definition.

Definition. Let X be a compact Hausdorff space. We say L is a Haar subspace of $C(X)$ of dimension r on X if and only if L is a subspace and zero is the only function in L that has r or more roots in X.

Let $X=\left\{x_{1}, \ldots, x_{k}\right\} \quad$ and $H=\left\{q^{(i)}: \quad q^{(i)}\left(x_{j}\right)=0, \quad i=0, \quad 1, \ldots, l-1\right.$; $j=1, \ldots, k ; q \in M\}$ where M is an ETS of dimension $n+1=l k+r$ on $l \supset X$.

Lemma 6. H is a Haar subspace of dimension r on X.
Proof. Clearly, H is a subspace of $C(X)=$ the space of all functions on X. Suppose H is not Haar. Then we can find a nonzero element $h \in H$ such that h has at least r roots in X. Let $q \in M$ be such that $q^{(/)}=h$. Then

$$
q^{(i)}\left(x_{j}\right), i=0,1, \ldots, l-1 ; j=1, \ldots, k .
$$

Moreover, $q^{(/)}$has at least r zeros in X which means that q has at least $k l+r$ zeros in X including multiplicities. But $q \in M$ and M is of dimension $n+1=l k+r$ and is an ETS so $q \equiv 0$ which is a contradiction.

Recall now that for $P=x_{1}, N(f-q)=\max _{x \in x}\left|f^{(1)}(x)-q^{(f)}(x)\right|$.
Theorem 7. If $f \in C^{(l+1)}(I)$, there is a unique $q_{0} \in S$ such that

$$
N\left(f-q_{0}\right)=\min _{\triangleleft \in S} N(f-q) .
$$

Proof. Suppose q_{1} and q_{2} are both minimizers of $N(f-q)$ as q ranges over S. Then $N\left(f-q_{1}\right)=N\left(f-q_{2}\right)$ and

$$
\begin{align*}
& \left(q_{1}^{(i)}-q_{2}^{(i)}\right)\left(x_{j}\right)=0, i=0,1, \ldots, l-1, j-1, \ldots, k \text {, so that } \\
& h \equiv q_{1}^{(i)}-q_{2}^{(I)} \text { is a member of } H . \tag{7.1}
\end{align*}
$$

Now since $\min _{q \in S} N(f-q)=\min _{h \in H} \max _{x \in X}\left|f^{\prime \prime \prime}(x)-q_{2}^{(\prime)}(x)-h(x)\right|$, then this minimum occurs only when $h \equiv 0$ by the Haar property of H. Thus $q_{1}^{(\prime)}=q_{2}^{(\prime)}$ and so using (7.1) we conclude $q_{1}=q_{2}$.

Remark. Before stating the local best approximation theorem for the uniform case we note that for each $h>0$ the best uniform approximation q_{h} on I_{h} is uniquely defined if M is a Haar space on I such that I_{h} is a compact subset of I containing at least $N+1$ points.

Theorem 8.1. Let $f \in C^{l+1}[I]$ and $P=\infty$. Then the net $q_{h} \rightarrow q_{0}$ uniformly on I as $h \rightarrow 0^{+}$where q_{0} is the unique minimizer of $N(f-q)$ as q ranges over S.

Concluding Remarks. During the analysis presented in this paper, we have always assumed that each interval was of the form $\left[x_{j}, x_{j}+h\right]$, $j=1, \ldots, k$. The only crucial aspect of this is that x_{j} be in the interval and that the length of the interval is the same for all j. However, if we allow the intervals length to vary (but shrink to zero as $h \rightarrow 0$) the limiting q_{0} may change. In a two point approximation problem, for example, if the intervals are $\left[x_{1}, x_{1}+h\right]$ and $\left[x_{2}, x_{2}+2 h\right]$ then the limiting q_{0} will minimize a weighted functional N with weights $1 / 3$ and $2 / 3$. Thus, ${ }^{\text {othe uniqueness of } q_{0}}$ also depends on the way in which we shrink the intervals. This phenomenon has been noted by Chui et al. also in the more general situation of multivariate local approximation [6].

References

1. C. K. Chui, O. Shisha, ani P. W. Smith, Best local approximation, J. Approx. Theory 15 (1975), 371-381.
2. C. K. Chli, P. W. Smith, and J. D. Ward, Best I^{2} local approximation, J. Approx. Theory 22 (1978), 254-261.
3. J. Wolfe, Interpolation and best L^{P} local approximation, J. Approx. Theory 32 (1981), 96-102.
4. L. Y. Su, "Best Local Approximation," Ph.D. Thesis, Texas A \& M University, College Station, 1979.
5. R. Beatson and C. K. Chui, Best multipoint local approximation, in "International Series of Numerical Mathematics," Vol. 60, pp. 283-296, Birkhäuser, Basel, 1981.
6. C. K. Chli, Harvey Diamond, and Louise Raphael, best local approximation in several variables, J. Approx. Theory 40 (1984), 343-350.
7. A. I. Alzamel. "Best Multipoint Local L^{μ} Approximation," Ph.D. Thesis, University of Oregon, Eugene, 1984.
